Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bin Deng and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (Ta–S) = 0.001 Å R factor = 0.025 wR factor = 0.071 Data-to-parameter ratio = 33.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cs₃TaS₄

Tricesium tantalum tetrasulfide, Cs_3TaS_4 , crystallizes in space group *Pnma* of the orthorhombic system. It is isostructural with K_3VS_4 . In the asymmetric unit, the site symmetries of one of the Cs atoms, the Ta atom, and two of the S atoms are *m*. The structure consists of the packing of discrete Cs⁺ cations and nearly regular tetrahedral TaS_4^{3-} anions. Received 8 November 2004 Accepted 16 November 2004 Online 27 November 2004

Comment

 Cs_3TaS_4 is a member of the large family A_3MQ_4 (A is an alkali metal, M = V, Nb or Ta, and Q = S or Se), which includes 13 compounds whose structures are known from single-crystal X-ray or neutron diffraction powder studies: Na_3VS_4 (Klepp & Gabl, 1997), Na₃NbS₄ (Niewa et al., 1998), Na₃TaS₄ (Herzog, Näther, Dürichen & Bensch, 1998; Niewa et al., 1998), K₃VS₄ (van den Berg & de Vries, 1964; Dürichen & Bensch, 1996), K₃NbS₄ (Latroche & Ibers, 1990), K₃NbSe₄ (Latroche & Ibers, 1990), K₃TaS₄ (Herzog, Näther & Bensch, 1998), Rb₃VS₄ (Emirdag-Eanes & Ibers, 2001), Rb₃NbS₄ (Krause et al., 1998; Niewa et al., 1998), Rb₃TaS₄ (Niewa et al., 1998), Cs₃VS₄ (Emirdag-Eanes & Ibers, 2001), Cs₃NbSe₄ (Krause et al., 1999) and Cs₃TaSe₄ (Yun et al., 1988). Whereas Na₃VS₄ crystallizes in the tetragonal system and Na₃NbS₄ and Na₃TaS₄ crystallize in *F*-centered orthorhombic cells, the K, Rb, and Cs compounds crystallize in space group Pnma (standard setting) of the orthorhombic system and are of the K₃VS₄ structure type (van den Berg & de Vries, 1964). We report here the structure of Cs₃TaS₄, which is a new member of this family of isostructural compounds.

Fig. 1 shows the asymmetric unit and Fig. 2 shows the crystal structure, which comprises discrete Cs⁺ cations and tetrahedral TaS₄³⁻ anions. The two crystallographically independent Cs cations are each coordinated by seven S atoms in an irregular polyhedron. The Cs1–S distances range from 3.4632 (9) to 3.7274 (11) Å and the Cs2–S distances range from 3.4374 (14) to 4.0975 (11) Å, comparable to those of 3.4061 (9)–3.6082 (9) and 3.4392 (9)–4.118 (1) Å in Cs₃VS₄

A view of the asymmetric unit of Cs₃TaS₄, with displacement ellipsoids at

 ${\rm (\!C\!\!\!\!C\!\!}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

the 90% probability level.

inorganic papers

(Emirdag-Eanes & Ibers, 2001). The Ta-S bond distances are 2.2691 (9), 2.272 (1) and 2.278 (1) Å, consistent with those of 2.264 (3), 2.266 (2) and 2.269 (2) Å in K₃TaS₄ (Herzog, Näther & Bensch, 1998). The S-Ta-S angles range from 108.38 (3) to 112.16 (5)°, comparable to those of 108.48 (9)–111.43 $(12)^{\circ}$ in K₃TaS₄ (Herzog, Näther & Bensch, 1998).

Experimental

Cs₃TaS₄ was obtained as colorless flat plates from a solid-state reaction of Cs₂S₃ (1.0 mmol), Ta (Alfa Aesar, 99.9%, 1.0 mmol), Li₂S (0.5 mmol) and S (Aldrich, 99.9%, 1.0 mmol). The Cs₂S₃ reactive flux and Li₂S were prepared by the stoichiometric reaction of Cs (Aldrich, 99.5%) or Li (Aldrich, 99.5%) with S in liquid NH₃. The reactants were loaded in a fused-silica tube that was then evacuated to 10^{-4} Torr (1 Torr = 133.322 Pa). The tube was heated to 773 K, kept at 773 K for 72 h, cooled at 4 K h⁻¹ to 373 K, and then the furnace was turned off. The reaction mixture was washed with dimethylformamide. The yield was about 10% based on Ta.

Crystal data

Cs ₃ TaS ₄	Mo $K\alpha$ radiation
$M_r = 707.92$	Cell parameters from 5650
Orthorhombic, Pnma	reflections
a = 9.9205 (8) Å	$\theta = 2.7 - 28.8^{\circ}$
b = 11.5070 (10) Å	$\mu = 19.83 \text{ mm}^{-1}$
c = 9.9406 (9) Å	T = 153 (2) K
$V = 1134.77 (17) \text{ Å}^3$	Plate, colorless
Z = 4	$0.43 \times 0.124 \times 0.046 \text{ mm}$
$D_x = 4.144 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART 1000 CCD	1482 independent reflections
diffractometer	1462 reflections with $I > 2\sigma(I)$
$0.3^{\circ} \omega$ scans	$R_{\rm int} = 0.046$
Absorption correction: numerical	$\theta_{\rm max} = 28.8^{\circ}$
face indexed (SHELXTL,	$h = -13 \rightarrow 13$
Sheldrick, 2003)	$k = -15 \rightarrow 15$
$T_{\min} = 0.037, T_{\max} = 0.396$	$l = -13 \rightarrow 13$

Refinement

12 415 measured reflections

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.071$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 1.20	$\Delta \rho_{\rm max} = 3.16 \text{ e } \text{\AA}^{-3}$
1482 reflections	$\Delta \rho_{\rm min} = -3.04 \text{ e } \text{\AA}^{-3}$
44 parameters	Extinction correction: SHELXL97
-	Extinction coefficient: 0.00075 (13)

Table 1

Selected	geometric	parameters	(Å,	°).	
----------	-----------	------------	-----	-----	--

Cs1-S3 ⁱ	3.4632 (9)	Cs2-S2 ^{vii}	3.5763 (14)
Cs1-S3 ⁱⁱ	3.5085 (9)	Cs2-S2	3.6825 (14)
Cs1-S1 ⁱⁱⁱ	3.5343 (10)	Cs2-S1 ⁱⁱⁱ	3.6915 (10)
Cs1-S1 ^{iv}	3.5588 (10)	Cs2-S1 ^v	4.0974 (11)
Cs1-S1 ^v	3.6221 (11)	Ta-S1	2.2691 (9)
Cs1-S2	3.6271 (6)	Ta-S3	2.272 (1)
Cs1-S2 ⁱⁱ	3.7274 (11)	Ta-S2	2.278 (1)
Cs2-S3 ^{vi}	3.4374 (14)		
S1 ^{iv} -Ta-S1	112.16 (5)	S1-Ta-S2	109.56 (3)
S1-Ta-S3	108.38 (3)	S3-Ta-S2	108.74 (4)

Symmetry codes: (i) $\frac{1}{2} - x$, 1 - y, $z - \frac{1}{2}$; (ii) -x, 1 - y, 1 - z; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} - z$; (iv) $x, \frac{1}{2} - y, z;$ (v) $\frac{1}{2} - x, \frac{1}{2} + y, z - \frac{1}{2};$ (vi) x, y, z - 1; (vii) $\frac{1}{2} + x, y, \frac{1}{2} - z.$

The structure of Cs₃TaS₄, viewed down [001].

The highest residual electron density is 0.04 Å from the Ta site, and the deepest hole is 0.81 Å from this same site.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-96676) at the Materials Research Center of Northwestern University.

References

Berg, J. M. van den & de Vries, R. (1964). Proc. K. Ned. Akad. Wet. Ser. B Phys. Sci. 67, 178-180.

Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45a) Bruker AXS Inc., Madison, Wisconsin, USA.

Dürichen, P. & Bensch, W. (1996). Eur. J. Solid State Inorg. Chem. 33, 309-320. Emirdag-Eanes, M. & Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 489-490.

Herzog, S., Näther, C. & Bensch, W. (1998). Acta Cryst. C54, 1742-1744.

Herzog, S., Näther, C., Dürichen, P. & Bensch, W. (1998). Z. Anorg. Allg. Chem. 624, 2021-2024.

Klepp, K. O. & Gabl, G. (1997). Eur. J. Solid State Inorg. Chem. 34, 1143-1154.

Krause, O., Näther, C. & Bensch, W. (1999). Acta Cryst. C55, 1197-1199. Krause, O., Näther, C., Jeß, I. & Bensch, W. (1998). Acta Cryst. C54, 902-904.

Latroche, M. & Ibers, J. A. (1990). Inorg. Chem. 29, 1503-1505.

Niewa, R., Vajenine, G. V. & DiSalvo, F. J. (1998). J. Solid State Chem. 139, 404-411.

Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

Yun, H., Randall, C. R. & Ibers, J. A. (1988). J. Solid State Chem. 76, 109-114.